Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581065

RESUMO

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Antioxidantes/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Cofator PQQ/farmacologia , Insuficiência Ovariana Primária/patologia , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 204, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349428

RESUMO

Pyrroloquinoline quinone (PQQ) is a natural antioxidant with diverse applications in food and pharmaceutical industries. A lot of effort has been devoted toward the discovery of PQQ high-producing microbial species and characterization of biosynthesis, but it is still challenging to achieve a high PQQ yield. In this study, a combined strategy of random mutagenesis and adaptive laboratory evolution (ALE) with fermentation optimization was applied to improve PQQ production in Hyphomicrobium denitrificans H4-45. A mutant strain AE-9 was obtained after nearly 400 generations of UV-LiCl mutagenesis, followed by an ALE process, which was conducted with a consecutive increase of oxidative stress generated by kanamycin, sodium sulfide, and potassium tellurite. In the flask culture condition, the PQQ production in mutant strain AE-9 had an 80.4% increase, and the cell density increased by 14.9% when compared with that of the initial strain H4-45. Moreover, batch and fed-batch fermentation processes were optimized to further improve PQQ production by pH control strategy, methanol and H2O2 feed flow, and segmented fermentation process. Finally, the highest PQQ production and productivity of the mutant strain AE-9 reached 307 mg/L and 4.26 mg/L/h in a 3.7-L bioreactor, respectively. Whole genome sequencing analysis showed that genetic mutations in the ftfL gene and thiC gene might contribute to improving PQQ production by enhancing methanol consumption and cell growth in the AE-9 strain. Our study provided a systematic strategy to obtain a PQQ high-producing mutant strain and achieve high production of PQQ in fermentation. These practical methods could be applicable to improve the production of other antioxidant compounds with uncleared regulation mechanisms. KEY POINTS: • Improvement of PQQ production by UV-LiCl mutagenesis combined with adaptive laboratory evolution (ALE) and fermentation optimization. • A consecutive increase of oxidative stress could be used as the antagonistic factor for ALE to enhance PQQ production. • Mutations in the ftfL gene and thiC gene indicated that PQQ production might be increased by enhancing methanol consumption and cell growth.


Assuntos
Antioxidantes , Hyphomicrobium , Cofator PQQ , Peróxido de Hidrogênio , Metanol , Estresse Oxidativo
3.
Biosens Bioelectron ; 250: 116049, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290381

RESUMO

Contemporary electrochemical impedance spectroscopy (EIS)-based biosensors face limitations in their applicability for in vivo measurements, primarily due to the necessity of using a redox probe capable of undergoing oxidation and reduction reactions in solution. Although previous investigations have demonstrated the effectiveness of EIS-based biosensors in detecting various target analytes using potassium ferricyanide as a redox probe, its unsuitability for blood or serum measurements, attributed to its inherent toxicity, poses a significant challenge. In response to this challenge, our study adopted a unique approach, focusing on the use of ingestible materials, by exploring naturally occurring substances within the body, with a specific emphasis on pyrroloquinoline quinone (PQQ). Following an assessment of PQQ's electrochemical attributes, we conducted a comprehensive series of EIS measurements. This involved the thorough characterization of the sensor's evolution, starting from the bare electrode and progressing to the immobilization of antibodies. The sensor's performance was then evaluated through the quantification of insulin concentrations ranging from 1 pM to 100 nM. A single frequency was identified for insulin measurements, offering a pathway for potential in vivo applications by combining PQQ as a redox probe with EIS measurements. This innovative approach holds promise for advancing the field of in vivo biosensing based on the EIS method.


Assuntos
Técnicas Biossensoriais , Cofator PQQ , Técnicas Biossensoriais/métodos , Insulina , Espectroscopia Dielétrica , Imunoensaio , Oxirredução , Eletrodos
4.
Int Microbiol ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294585

RESUMO

In previous and present studies, four enzymes (GCD1, GCD3, GCD4, and MQO1) have been found to act as lactose-oxidizing enzymes of Pseudomonas taetrolens. To investigate whether the four enzymes were the only lactose-oxidizing enzymes of P. taetrolens, we performed the inactivation of gcd1, gcd3, gcd4, and mqo1 genes in P. taetrolens. Compared to the wild-type strain, the lactobionic acid (LBA)-producing ability of P. taetrolens ∆gcd1 ∆gcd3 ∆gcd4 ∆mqo1 was only slightly decreased, implying that P. taetrolens possesses more lactose-oxidizing enzymes. Interestingly, the four lactose-oxidizing enzymes were all pyrroloquinoline quinone (PQQ)-dependent. To identify other unidentified lactose-oxidizing enzymes of P. taetrolens, we prevented the synthesis of PQQ in P. taetrolens by inactivating the genes related to PQQ synthesis such as pqqC, pqqD, and pqqE. Surprisingly, all three knocked-out strains were unable to convert lactose to LBA, indicating that all lactose-oxidizing enzymes in P. taetrolens were inactivated by eliminating PQQ synthesis. In addition, external PQQ supplementation restored the LBA production ability of P. taetrolens ∆pqqC, comparable to the wild-type strain. These results indicate that all lactose-oxidizing enzymes in P. taetrolens are PQQ-dependent.

5.
J Appl Toxicol ; 44(2): 235-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37650462

RESUMO

Gentamicin (GM) is one of the commonly used antibiotics in the aminoglycoside class but is ototoxic, which constantly impacts the quality of human life. Pyrroloquinoline quinone (PQQ) as a redox cofactor produced by bacteria was found in soil and foods that exert an antioxidant and redox modulator. It is well documented that the PQQ can alleviate inflammatory responses and cytotoxicity. However, our understanding of PQQ in ototoxicity remains unclear. We reported that PQQ could protect against GM-induced ototoxicity in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells in vitro. To evaluate reactive oxygen species (ROS) production and mitochondrial function, ROS and JC-1 staining, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR) measurements in living cells, mitochondrial dynamics analysis was performed. GM-mediated damage was performed by reducing the production of ROS and inhibiting mitochondria biogenesis and dynamics. PQQ ameliorated the cellular oxidative stress and recovered mitochondrial membrane potential, facilitating the recovery of mitochondrial biogenesis and dynamics. Our in vitro findings improve our understanding of the GM-induced ototoxicity with therapeutic implications for PQQ.


Assuntos
Gentamicinas , Ototoxicidade , Humanos , Gentamicinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cofator PQQ/farmacologia , Cofator PQQ/uso terapêutico , Cofator PQQ/metabolismo , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Ototoxicidade/metabolismo , Células Ciliadas Auditivas/metabolismo , Antibacterianos/metabolismo , Apoptose
6.
World J Microbiol Biotechnol ; 40(1): 31, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38057682

RESUMO

Pyrroloquinoline quinone (PQQ) is a peptide-modified natural product. PQQ has important physiological functions such as anti-oxidation, anti-aging, and immunity enhancement. However, due to the lack of in-depth understanding of PQQ biosynthesis and regulation, inefficient PQQ production level limits its wide application. Accordingly, there is still an urgent need to develop high-yielding strains for synthesis of PQQ. This paper reviewed the research and development trends on the PQQ biosynthetic pathways, catalytic reaction mechanism of key enzymes, and the selection of high-yielding strains, which also prospects for the future construction of PQQ biosynthetic microbial cell factories.


Assuntos
Cofator PQQ , Oxirredução
7.
Anim Nutr ; 15: 409-419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38046955

RESUMO

Hindered growth often occurs because of psychological and environmental stress during the weaning period of piglets. This study aimed to compare the effects of growth performance, diarrhea indices, digestibility of nutrients, antioxidant capacity, neurotransmitters levels and metabolism of weaned pigs fed diets supplemented with pyrroloquinoline quinone (PQQ) and zinc oxide (ZnO). Pigs weaned at d 28 (n = 108) were fed with three different diets including: the basal diet (CTRL group), the basal diet supplemented with 3.0 mg/kg PQQ (PQQ group) and the basal diet containing 1,600 mg/kg ZnO (ZNO group). During the first 14 d, weaned pigs fed the diet supplemented with PQQ and ZnO decreased feed to gain ratio and diarrhea rate (P < 0.01). Compared with the CTRL group, average daily gain was increased in weaned pigs in the PQQ group from d 15 to 28 (P = 0.03). Compared with the CTRL group, pigs fed PQQ and ZnO supplemented diets showed improved apparent total tract digestibility (ATTD) of nutrients (P ≤ 0.05). During the overall experimental period, the concentration of malondialdehyde was decreased in plasma of pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). At d 28, the concentration of vasoactive intestinal peptide (VIP) and calcitonin gene-related peptide (CGRP) was lower in plasma of weaned pigs in the PQQ and ZNO groups compared with the CTRL group (P < 0.05). There was no difference between the PQQ and ZNO group in growth performance, ATTD of nutrition, antioxidant capacity and neurotransmitters levels. PQQ increased 3-methoxy-4-hydroxymandelate (P < 0.05) compared with the CTRL group. According to metabolomic analysis, erucamide, formononetin and 3-methyl-L-histidine were up-regulated in the PQQ group (P < 0.05). Compared with the CTRL group, aloesin and dibutyl adipate were down-regulated in the PQQ group (P < 0.05). In conclusion, similar to ZnO, PQQ improves growth performance, digestibility of nutrients, antioxidant capacity, neuromodulation and metabolism of weaned pigs. Thus, like ZnO, PQQ can be effectively applied in weaned pigs.

8.
Pol J Microbiol ; 72(4): 443-460, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095308

RESUMO

Graves' disease (GD) is an autoimmune disorder disease, and its prevalence continues to increase worldwide. Pyrroloquinoline quinone (PQQ) is a naturally antioxidant compound in milk, vegetables, and meat. We aim to identify the treatment efficacy of PQQ on GD and its regulatory effect on intestinal microbiota. The GD mice model was built by an adenovirus expressing autoantigen thyroid-stimulating hormone receptor (Ad-TSHR289). Fecal samples were collected for 16S rDNA sequencing after PQQ pretreatments (20, 40, or 60 mg/kg BW/day) for 4 weeks. Thyroid and intestine functions were measured. The levels of serum TSHR and T4 were significantly raised, and the thyroid gland size was typically enlarged in the GD group than in controls, reversed by PQQ therapy. After PQQ replenishment, IL6 and TNFα levels in small intestine tissues were lower than those in the GD group, with Nrf2 and HO1 levels improved. Also, the PQQ supplement could maintain the mucosal epithelial barrier impaired by GD. In microbial analyses, PQQ treatment could prompt the diversity recovery of gut microbiota and reconstruct the microbiota composition injured by GD. Lactobacillus served as the most abundant genus in all groups, and the abundance of Lactobacillus was increased in the GD group than in control and PQQ groups. Besides, Lactobacillus was highly correlative with all samples and the top 50 genera. PQQ supplementation regulates thyroid function and relieves intestine injury. PQQ changes the primary composition and abundance of GD's intestine microbiota by moderating Lactobacillus, which may exert in the pathogenesis and progression of GD.


Assuntos
Microbioma Gastrointestinal , Doença de Graves , Camundongos , Animais , Microbioma Gastrointestinal/fisiologia , Cofator PQQ , Doença de Graves/tratamento farmacológico , Doença de Graves/genética , Receptores da Tireotropina/genética
9.
Food Chem X ; 20: 101021, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144785

RESUMO

Pyrroloquinoline quinone disodium (PQQ·Na2) has been considered a human food supplement for human health promotion with its antioxidant properties. To determine whether PQQ·Na2 had similar functions to improve the antioxidant ability of layers and eggs, 180 laying hens were fed with 0 or 0.4 mg/kg PQQ·Na2 diets. Supplementation with PQQ·Na2 increased the albumen height, Haugh unit of the eggs. PQQ·Na2 also led to a higher glutathione peroxidase (GSH-Px) concentration in plasma and a lower malondialdehyde (MDA) content in the liver and egg yolk. Similarly, liver gene and protein expression of nuclear factor erythroid 2-related 2 (Nrf2) and heme oxygenase 1 (HO-1) were up-regulated by PQQ·Na2. Moreover, PQQ·Na2 increased the abundance of Firmicutes, Microbacterium, Erysipelatoclostridium, Mailhella, Lachnospiraceae_UCG-010, and Herbaspirillum in gut. Overall, these results suggested PQQ·Na2 increased the antioxidant ability of layers and eggs which might be in connection with the activation of the Nrf2/HO-1 pathway and optimized gut microflora.

10.
Fluids Barriers CNS ; 20(1): 84, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981683

RESUMO

BACKGROUND: Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS: Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS: Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION: These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.


Assuntos
Encéfalo , Cofator PQQ , Animais , Camundongos , Cofator PQQ/farmacologia , Cofator PQQ/uso terapêutico , Espécies Reativas de Oxigênio , Ácido Fólico/farmacologia , DNA Mitocondrial
11.
Acta Neuropathol Commun ; 11(1): 146, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684640

RESUMO

Retinal ganglion cells are highly metabolically active requiring strictly regulated metabolism and functional mitochondria to keep ATP levels in physiological range. Imbalances in metabolism and mitochondrial mechanisms can be sufficient to induce a depletion of ATP, thus altering retinal ganglion cell viability and increasing cell susceptibility to death under stress. Altered metabolism and mitochondrial abnormalities have been demonstrated early in many optic neuropathies, including glaucoma, autosomal dominant optic atrophy, and Leber hereditary optic neuropathy. Pyrroloquinoline quinone (PQQ) is a quinone cofactor and is reported to have numerous effects on cellular and mitochondrial metabolism. However, the reported effects are highly context-dependent, indicating the need to study the mechanism of PQQ in specific systems. We investigated whether PQQ had a neuroprotective effect under different retinal ganglion cell stresses and assessed the effect of PQQ on metabolic and mitochondrial processes in cortical neuron and retinal ganglion cell specific contexts. We demonstrated that PQQ is neuroprotective in two models of retinal ganglion cell degeneration. We identified an increased ATP content in healthy retinal ganglion cell-related contexts both in in vitro and in vivo models. Although PQQ administration resulted in a moderate effect on mitochondrial biogenesis and content, a metabolic variation in non-diseased retinal ganglion cell-related tissues was identified after PQQ treatment. These results suggest the potential of PQQ as a novel neuroprotectant against retinal ganglion cell death.


Assuntos
Neuroproteção , Fármacos Neuroprotetores , Células Ganglionares da Retina , Cofator PQQ/farmacologia , Fármacos Neuroprotetores/farmacologia , Trifosfato de Adenosina
12.
Int J Mol Sci ; 24(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37762380

RESUMO

Rhodopseudomonas palustris is a purple non-sulfide bacterium (PNSB), and some strains have been proven to promote plant growth. However, the mechanism underlying the effect of these PNSBs remains limited. Based on genetic information, R. palustris possesses the ability to produce pyrroloquinoline quinone (PQQ). PQQ is known to play a crucial role in stimulating plant growth, facilitating phosphorous solubilization, and acting as a reactive oxygen species scavenger. However, it is still uncertain whether growth conditions influence R. palustris's production of PQQ and other characteristics. In the present study, it was found that R. palustris exhibited a higher expression of genes related to PQQ synthesis under autotrophic culture conditions as compared to acetate culture conditions. Moreover, similar patterns were observed for phosphorous solubilization and siderophore activity, both of which are recognized to contribute to plant-growth benefits. However, these PNSB culture conditions did not show differences in Arabidopsis growth experiments, indicating that there may be other factors influencing plant growth in addition to PQQ content. Furthermore, the endophytic bacterial strains isolated from Arabidopsis exhibited differences according to the PNSB culture conditions. These findings imply that, depending on the PNSB's growing conditions, it may interact with various soil bacteria and facilitate their infiltration into plants.


Assuntos
Arabidopsis , Rodopseudomonas , Humanos , Cofator PQQ , Transtornos do Crescimento , Fósforo
13.
Sci Total Environ ; 901: 166468, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37619729

RESUMO

Phosphorus (P) is a limiting nutrient in the soil-plant nutrient cycling. Although the exogenous application of chemical P fertilizers can satisfy crop P requirements during critical growth phases. While excessive P fertilizers use results in low phosphorus acquisition efficiency (PAE), it has serious environmental consequences and hastens the depletion of P mineral reserves. Phosphate-solubilizing bacteria (PSB) have the potential to make insoluble phosphate available to plants through solubilization and mineralization, increasing crop yields while maintaining environmental sustainability. Existing reviews mainly focus on the beneficial effects of PSB on crop performance and related mechanisms, while few of them elucidate the action mechanisms of PSB in soil-microbe-plant interactions for crop cultivation with high yield efficiency. Hence, this study provides a comprehensive review of the physicochemical and molecular mechanisms (e.g., root exudates, extracellular polysaccharides, organic acids, phosphatases, and phosphate-specific transport systems) of PSB to facilitate the P cycle in the soil-plant systems. Further, the potential of commercial applications of PSB (e.g., genetic engineering, seed priming and coating) are also discussed in order to highlight their contribution to sustainable agriculture. Finally, existing challenges and future prospects in agricultural applications are proposed. In conclusion, we firmly believe that PSB represent a highly significant biotechnological tool for enhancing agricultural productivity and offers a wide range of extensive potential applications.

14.
Front Microbiol ; 14: 1191436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560521

RESUMO

As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca2+)-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the Km value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K+) and calcium (Ca2+), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca2+-dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.

15.
Macromol Biosci ; 23(11): e2300203, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37441796

RESUMO

Elastin is an essential extracellular matrix protein that enables tissues and organs such as arteries, lungs, and skin, which undergo continuous deformation, to stretch and recoil. Here, an approach to fabricating artificial elastin with close-to-native molecular and mechanical characteristics is described. Recombinantly produced tropoelastin are polymerized through coacervation and allysine-mediated cross-linking induced by pyrroloquinoline quinone (PQQ). A technique that allows the recovery and repeated use of PQQ for protein cross-linking by covalent attachment to magnetic Sepharose beads is developed. The produced material closely resembles natural elastin in its molecular, biochemical, and mechanical properties, enabled by the occurrence of the cross-linking amino acids desmosine, isodesmosine, and merodesmosine. It possesses elevated resistance against tryptic proteolysis, and its Young's modulus ranging between 1 and 2 MPa is similar to that of natural elastin. The approach described herein enables the engineering of mechanically resilient, elastin-like materials for biomedical applications.


Assuntos
Elastina , Tropoelastina , Elastina/química , Tropoelastina/química , Aminoácidos , Proteólise
16.
Microorganisms ; 11(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375098

RESUMO

Rahnella aquatilis AZO16M2, was characterized for its phosphate solubilization capacity to improve the establishment and survival of Musa acuminata var. Valery seedlings under ex-acclimation. Three phosphorus sources (Rock Phosphate (RF), Ca3(PO4)2 and K2HPO4) and two types of substrate (sand:vermiculite (1:1) and Premix N°8) were selected. The factorial analysis of variance (p < 0.05) showed that R. aquatilis AZO16M2 (OQ256130) solubilizes Ca3(PO4)2 in solid medium, with a Solubilization Index (SI) of 3.77 at 28 °C (pH 6.8). In liquid medium, it was observed that R. aquatilis produced 29.6 mg/L soluble P (pH 4.4), and synthesized organic acids (oxalic, D-gluconic, 2-ketogluconic and malic), Indole Acetic Acid (IAA) (33.90 ppm) and siderophores (+). Additionally, acid and alkaline phosphatases (2.59 and 2.56 µg pNP/mL/min) were detected. The presence of the pyrroloquinoline-quinone (PQQ) cofactor gene was confirmed. After inoculating AZO16M2 to M. acuminata in sand:vermiculite with RF, the chlorophyll content was 42.38 SPAD (Soil Plant Analysis Development). Aerial fresh weight (AFW), aerial dry weight (ADW) and root dry weight (RDW) were superior to the control by 64.15%, 60.53% and 43.48%, respectively. In Premix N°8 with RF and R. aquatilis, 8.91% longer roots were obtained, with 35.58% and 18.76% more AFW and RFW compared with the control as well as 94.45 SPAD. With Ca3(PO4)2, values exceeded the control by 14.15% RFW, with 45.45 SPAD. Rahnella aquatilis AZO16M2 favored the ex-climatization of M. acuminata through improving seedling establishment and survival.

17.
Aging Cell ; 22(9): e13912, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365714

RESUMO

Age-related osteoporosis is associated with increased oxidative stress and cellular senescence. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong antioxidant capacity; however, the effect and underlying mechanism of PQQ on aging-related osteoporosis remain unclear. The purpose of this study was to investigate whether dietary PQQ supplementation can prevent osteoporosis caused by natural aging, and the potential mechanism underlying PQQ antioxidant activity. Here, we found that when 6-month-old or 12-month-old wild-type mice were supplemented with PQQ for 12 months or 6 months, respectively, PQQ could prevent age-related osteoporosis in mice by inhibiting osteoclastic bone resorption and stimulating osteoblastic bone formation. Mechanistically, pharmmapper screening and molecular docking studies revealed that PQQ appears to bind to MCM3 and reduces its ubiquitination-mediated degradation; stabilized MCM3 then competes with Nrf2 for binding to Keap1, thus activating Nrf2-antioxidant response element (ARE) signaling. PQQ-induced Nrf2 activation inhibited bone resorption through increasing stress response capacity and transcriptionally upregulating fibrillin-1 (Fbn1), thus reducing Rankl production in osteoblast-lineage cells and decreasing osteoclast activation; as well, bone formation was stimulated by inhibiting osteoblastic DNA damage and osteocyte senescence. Furthermore, Nrf2 knockout significantly blunted the inhibitory effects of PQQ on oxidative stress, on increased osteoclast activity and on the development of aging-related osteoporosis. This study reveals the underlying mechanism of PQQ's strong antioxidant capacity and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Camundongos , Animais , Antioxidantes/metabolismo , Cofator PQQ/farmacologia , Cofator PQQ/metabolismo , Cofator PQQ/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Regulação para Cima , Fibrilina-1/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo , Envelhecimento , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Reabsorção Óssea/tratamento farmacológico
18.
Front Mol Biosci ; 10: 1200025, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214340

RESUMO

Obesity is a major health concern worldwide, and its prevalence continues to increase in several countries. Pyrroloquinoline quinone (PQQ) is naturally found in some foods and is available as a dietary supplement in its disodium crystal form. The potential health benefits of PQQ have been studied, considering its antioxidant and anti-inflammatory properties. Furthermore, PQQ has been demonstrated to significantly influence the functions of mitochondria, the organelles responsible for energy production within cells, and their dysfunction is associated with various health conditions, including obesity complications. Here, we explore PQQ properties that can be exploited in obesity treatment and highlight the underlying molecular mechanisms. We review animal and cell culture studies demonstrating that PQQ is beneficial for reducing the accumulation of visceral and hepatic fat. In addition to inhibiting lipogenesis, PQQ can increase mitochondria number and function, leading to improved lipid metabolism. Besides diet-induced obesity, PQQ ameliorates programing obesity of the offspring through maternal supplementation and alters gut microbiota, which reduces obesity risk. In obesity progression, PQQ mitigates mitochondrial dysfunction and obesity-associated inflammation, resulting in the amelioration of the progression of obesity co-morbidities, including non-alcoholic fatty liver disease, chronic kidney disease, and Type 2 diabetes. Overall, PQQ has great potential as an anti-obesity and preventive agent for obesity-related complications. Although human studies are still lacking, further investigations to address obesity and associated disorders are still warranted.

19.
Biotechnol Biofuels Bioprod ; 16(1): 11, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658601

RESUMO

BACKGROUND: Pyrroloquinoline quinone (PQQ), a cofactor for bacterial dehydrogenases, is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. Due to the extremely high cost of chemical synthesis and low yield of microbial synthesis, the election of effective strains and the development of dynamic fermentation strategies for enhancing PQQ production are meaningful movements to meet the large-scale industrial requirements. RESULTS: A high-titer PQQ-producing mutant strain, Hyphomicrobium denitrificans FJNU-A26, was obtained by integrating ARTP (atmospheric and room­temperature plasma) mutagenesis, adaptive laboratory evolution and high-throughput screening strategies. Afterward, the systematic optimization of the fermentation medium was conducted using a one-factor-at-a-time strategy and response surface methodology to increase the PQQ concentration from 1.02 to 1.37 g/L. The transcriptional analysis using qRT-PCR revealed that the expression of genes involved in PQQ biosynthesis were significantly upregulated when the ARTP-ALE-derived mutant was applied. Furthermore, a novel two-stage pH control strategy was introduced to address the inconsistent effects of the pH value on cell growth and PQQ production. These combined strategies led to a 148% increase in the PQQ concentration compared with that of the initial strain FJNU-6, reaching 1.52 g/L with a yield of 40.3 mg/g DCW after 144 h of fed-batch fermentation in a 5-L fermenter. CONCLUSION: The characteristics above suggest that FJNU-A26 represents an effective candidate as an industrial PQQ producer, and the integrated strategies can be readily extended to other microorganisms for the large-scale production of PQQ.

20.
J Oleo Sci ; 71(12): 1761-1767, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336345

RESUMO

Following a growing interest in the physiological effects of pyrroloquinoline quinone (PQQ), more cell culture experiments have begun to elucidate its mechanism of action. However, to our knowledge, no reports have used instrumental analysis, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), to study cellular uptake of PQQ. In addition, despite the propensity of PQQ to react with amino acids and other compounds, only a handful of cell culture experiments have been conducted on PQQ derivatives. In the present study, we prepared PQQ derivatives by reacting PQQ with various amino acids and used them as reference standards for optimizing the LC-MS/MS analysis conditions to detect PQQ and its derivatives. Using this method, we evaluated the uptake of PQQ into mouse 3T3-L1 cells and found that most PQQ added to the medium was taken up by the cells in its unchanged form, while some PQQ reacted with amino acids in the medium and was taken up by the cells as PQQ derivatives. These results suggest that PQQ derivatives may contribute to the physiological effects of PQQ. To further elucidate the function of PQQ, it is necessary for future studies to clarify the activity of PQQ derivatives and to evaluate the types of PQQ present in food, animal, and cell samples in more detail.


Assuntos
Cofator PQQ , Espectrometria de Massas em Tandem , Camundongos , Animais , Cofator PQQ/química , Cofator PQQ/metabolismo , Células 3T3-L1 , Cromatografia Líquida , Aminoácidos , Técnicas de Cultura de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...